# YDS60-C24 Smart Power Sensor Quick Guide

Issue: 02 Date: 2025-02-23

## 1 Overview

### 1.1 Model Naming Conventions

YDS60-C24



#### 

The dimensional tolerance is  $\pm$  1 mm.

### 1.2 Appearance

Specifications on the front panel







### 1.3 Key Specifications

| Category                         | YDS60-C24                                            |  |
|----------------------------------|------------------------------------------------------|--|
| Nominal voltage                  | 230V AC/400V AC, 50Hz/60Hz                           |  |
| Current measurement<br>range     | 0~250A                                               |  |
| Voltage measurement<br>range     | line voltage 90V~500V                                |  |
| Electricity metering<br>accuracy | Class 1 (error within ±1%)                           |  |
| Power grid system                | Three -phase four-wire or three-phase three-wire     |  |
| Baud rate                        | 4800/9600/19200/115200 bps (default value: 9600 bps) |  |
| Operating temperature            | -25°C to +60°C                                       |  |
| Installation mode                | Guide rail-mounted                                   |  |
| Certification                    | CE, RCM, and UKCA                                    |  |

### 1.4 Port Definition

- Voltage Input: 3 × 230/400V or 3 × 400V
- Current Transformer(CT): 250A/50mA





### D NOTE

The protective film of the nameplate can be tear off.

# 2 Installing the YDS60-C24

- 1. Install the Smart Power Sensor on the standard guide rail of DIN35mm.
- Press the Smart Power Sensor downwards onto the guide rail, and then push it in place along the guide rail.



# **3** Installing Cables

### 3.1 Prepare cables

| Cable                    | Port           | Туре                                                   | Conductor<br>Cross-<br>sectional<br>Area Range | Outer<br>Diameter | Source                   |              |
|--------------------------|----------------|--------------------------------------------------------|------------------------------------------------|-------------------|--------------------------|--------------|
|                          | Ua-3           |                                                        |                                                |                   |                          |              |
|                          | Ub-6           | Single-core<br>outdoor                                 | 1.5~4mm²                                       | 3~8mm             | Prepared by              |              |
| voltage cable            | Uc-9           | copper                                                 |                                                |                   | the customer             |              |
|                          | Un-10          | cubic                                                  |                                                |                   |                          |              |
|                          | la* - 13       |                                                        |                                                |                   |                          |              |
| eu weent                 | la - 14        |                                                        |                                                |                   |                          |              |
| current                  | lb* - 16       |                                                        |                                                |                   | Supplied with            |              |
| transformer              | lb - 17 /      |                                                        | /                                              | /                 | current                  |              |
| cable                    | lc* - 19       |                                                        |                                                |                   |                          | transformers |
| Cable                    | lc - 21        |                                                        |                                                |                   |                          |              |
|                          | RS485A -<br>24 | Two-core                                               |                                                |                   |                          |              |
| Communicati<br>ons cable | RS485B -<br>25 | outdoor<br>shielded<br>twisted<br>pair copper<br>cable | 0.25~1mm <sup>2</sup>                          | 4~11mm            | Prepared by the customer |              |

#### 3.2 Connecting Diagram

#### Three-phase four-wire connection

- 1. Connect the Ua and Uc voltage cables to terminals 3 and 9, and connect the Ub voltage cables to terminals 6 and 10 of the sensor.
- Connect the current transformer IA\* (white wire) and IA (blue wire) used for phase A to terminals 13 and 14 of the sensor; Current transformer IB\* (white wire) and IB (blue wire) for phase B connected to terminals 16 and 17 of the sensor; Current transformer IC\* (white line) and IC (blue line) for phase C
- connected to terminals 19 and 21 of the sensor.Connect RS485A and RS485B to the communication host.



#### D NOTE

- The CT direction must be consistent with the arrow direction as shown in the preceding figure.
- The maximum torque of 3, 6, 9 and 10 terminal screws is 1.7N.m, and the recommended torque is (1.0  $\pm$  0.1) N.m; The maximum torque of 13, 14, 16, 17, 19, 21, 24 and 25 terminal screws is 0.4N.m, and the recommended torque is (0.20  $\pm$  0.05) N.m.
- 2A is recommended for FUSE in the wiring diagram.

#### Three-phase three-wire connection

- 1. Connect the Ua and Uc voltage cables to terminals 3 and 9, and connect the Ub voltage cables to terminals 6 and 10 of the sensor.
- 2. Connect the current transformer IA\* (white wire) and IA (blue wire) for phase A to terminals 13 and 14 of the sensor; Current transformer IB\* (white wire) and IB (blue wire) for phase B connected to terminals 16 and 17 of the sensor; Current transformer IC\* (white line) and IC (blue line) for phase C connected to terminals 19 and 21 of the sensor.connected to terminals 19 and 21 of the sensor.
- 3. Connect RS485A and RS485B to the communication host.



#### D NOTE

- The CT direction must be consistent with the arrow direction as shown in the preceding figure.
- The maximum torque of 3, 6, 9 and 10 terminal screws is 1.7N.m, and the recommended torque is (1.0  $\pm$  0.1) N.m; The maximum torque of 13, 14, 16, 17, 19, 21, 24 and 25 terminal screws is 0.4N.m, and the recommended torque is (0.20  $\pm$  0.05) N.m.
- 2A is recommended for FUSE in the wiring diagram.

# 4 User Interface

### 4.1 Model Display (Auto loop)

Auto loop per page hold time = 5s.

| No. | Display interface | Description                        | No. | Display interface | Description                          |
|-----|-------------------|------------------------------------|-----|-------------------|--------------------------------------|
| 1   |                   | lmp. active<br>energy<br>=10000kWh | 2   | 2345.67           | Exp. active<br>energy<br>=2345.67kWh |
| 3   | PL 329 1          | active power<br>=3.291kW           | 4   | <u>100 2200,</u>  | Phase A voltage<br>= 220.0V          |
| 5   | <u>NP 550 H</u>   | Phase B voltage<br>= 220.1V        | 6   | <u>nc 5505</u> ,  | Phase C voltage<br>= 220.2V          |
| 7   | IA 5.000 ×        | Phase A current<br>= 5.000A        | 8   | 16 500 1.         | Phase B current<br>= 5.001A          |
| 9   | IC 5002 ·         | Phase C current<br>= 5.002A        | 10  | F 50.00           | Frequency<br>Freq = 50.00 Hz         |

### 4.2 Display(Key switch)

Press "ESC" or "  $\rightarrow$  "to switch between the following display interfaces.

| No. | Display interface                    | Description                            | No. | Display interface | Description                                                                  |
|-----|--------------------------------------|----------------------------------------|-----|-------------------|------------------------------------------------------------------------------|
| 1   | <u>*</u> 765433                      | Comb. active<br>energy<br>=7654.33kWh  | 2   |                   | lmp. active<br>energy<br>= 10000kWh                                          |
| 3   | 234567**                             | Exp. active<br>energy<br>=2345.67kWh   | 4   | n 1-19600         | None parity,<br>8 data bits,<br>1 stop bit,<br>Baud<br>=9600bps<br>(default) |
| 5   | ו••••••••••••••••••••••••••••••••••• | 011 represents<br>address<br>(default) | 6   | nu 5500.          | Phase A<br>voltage<br>= 220.0V                                               |
| 7   | UP 550 h                             | Phase B voltage<br>= 220.1V            | 8   | NC 5505.          | Phase C<br>voltage<br>= 220.2V                                               |

### D NOTE

Comb. active energy = Imp. active energy - Exp. active energy

| No. | Display interface | Description                            | No. | Display interface | Description                            |
|-----|-------------------|----------------------------------------|-----|-------------------|----------------------------------------|
| 9   | IA 5000 ·         | Phase A<br>current<br>= 5.000A         | 10  | 16 500 1.         | Phase B current<br>= 5.001A            |
| 11  | IC 5002 ·         | Phase C<br>current<br>= 5.002A         | 12  | PL 329 1          | Phase active<br>power<br>= 3.291kW     |
| 13  | PR (090%)         | Phase A active<br>power<br>= 1.090kW   | 14  | РЬ 110 1          | Phase B active<br>power<br>= 1.101kW   |
| 15  | PC 1.100™         | Phase C active<br>power<br>= 1.100kW   | 16  | F£ 0.500          | Power factor<br>PFt = 0.500            |
| 17  | FA 1000           | Phase A power<br>factor<br>PFa = 1.000 | 18  | Fb 0.500          | Phase B power<br>factor PFb =<br>0.500 |
| 19  | FC-0.500          | Phase C power<br>factor PFc =<br>0.500 | 20  | F 50.00           | Frequency Freq<br>= 50.00 Hz           |

# 4.3 Parameter Settings

| No. | Parameter | Value Range                                    | Description                                                                                                                                                                                                                |
|-----|-----------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Prot      | 0: n.1<br>1: n.2<br>2: E.1<br>3: o.1<br>4: 645 | Settings for communication stop bit<br>and Parity bits:<br>0: None parity, 1 stop bit, n.1;<br>1: None parity, 2 stop bits, n.2;<br>2: Even parity, 1 stop bit, E.1;<br>3: Odd parity, 1 stop bit, O.1;<br>4: Factory mode |
| 2   | bRud      | 2: 4.800<br>3: 9.600<br>4: 19.20<br>5: 115.2   | Communication baud rate:<br>2: 4800bps;<br>3: 9600bps (default);<br>4: 19200bps;<br>5: 115200bps.                                                                                                                          |
| 3   | Addr      | 11~19                                          | Modbus communication address.                                                                                                                                                                                              |

#### 4.4 Parameter Setting Operations

Key description: "SET" represents "confirm" or "cursor shift" (when entering digits), "ESC" represents "exit", and "----" represents "add". The password is 701. by default.

#### Set communication address, check bit, and baud rate:



#### Modify user password:



# 5 Troubleshooting

| Symptom                                | Cause Analysis                                                                                                                                                                                                                                                                                                                                                              | Troubleshooting Method                                                                                                                                                                                                                                                                     |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No display<br>after<br>power-on        | <ol> <li>The cable connection is incorrect.</li> <li>The voltage supplied to the<br/>meter is abnormal.</li> </ol>                                                                                                                                                                                                                                                          | <ol> <li>Connect the cables correctly<br/>(see wiring diagrams).</li> <li>Supply the correct voltage<br/>based on the specifications.</li> </ol>                                                                                                                                           |  |
| Abnormal<br>RS485<br>communica<br>tion | <ol> <li>The RS485 communication cable<br/>is disconnected, short-circuited,<br/>or reversely connected.</li> <li>The communication address,<br/>baud rate, data bit, and parity bit<br/>of the meter do not match those<br/>of the inverter.</li> </ol>                                                                                                                    | <ol> <li>If the communication cable is<br/>faulty, replace it.</li> <li>Set the communication address,<br/>baud rate, data bit, and parity<br/>bit of the meter to be the same<br/>as those of the inverter by<br/>pressing buttons. For details,<br/>see "Parameter Settings".</li> </ol> |  |
| Inaccurate<br>metering                 | <ol> <li>The cable connection is incorrect.<br/>Check whether the corresponding<br/>phase sequence of voltage and<br/>current is correct.</li> <li>Check whether the high and low<br/>ends of the current transformer<br/>inlet are reversely connected. If<br/>the values Pa, Pb, and Pc are<br/>negative, the high and low ends<br/>are connected incorrectly.</li> </ol> | <ol> <li>Connect the cables correctly<br/>(see wiring diagrams).</li> <li>If a negative value is displayed,<br/>change the cable connection<br/>for the current transformer to<br/>ensure that the high and low<br/>ends are connected correctly.</li> </ol>                               |  |

# 6 Installation Verification

- 1. Check that all mounting brackets are securely installed and all screws are tightened.
- 2. Check that all cables are reliably connected in correct polarity without short circuit.

# 7 Customer Service Contact



https://digitalpower.huawei.com

Path: About Us > Contact Us > Service Hotlines

# 8 Digital Power Customer



https://digitalpower.huawei.com/robotchat